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An Advantageous, Alternative Parameterization of Rotations for 
Analytical Photogrammetry 

ALLEN J. POPE 

Geodetic Research and Development Laboratory, Coast and Geodetic Survey 

ABSTRACT. A case is made for increased use of a method of representing an orthogonal 
matrix that is different from the one now used in most analytical photogrammetric solutions. 
The relevant computational formulas are given, along with their derivation and geometric 
interpretation. 

INTRODUCTION 

Recent proposals (Brown 1968, Koch 1970) for 
photogrammetric mapping of the moon and planets 
involve the analytical combination of thousands of 
photographs which it will be desirable to adjust in as 
large simultaneous groups as possible. Earth-bound 
photogrammetrists continue to strive for the capa- 
bility of practical simultaneous adjustment of ever 
larger blocks (Keller 1967). In these undertakings 
even small savings of computer.time per photogram 
are worth considering because of the large number 
of photographs and the desirability of iterating to a 
least-squares solution of the true nonlinear problem. 
It is, admittedly, unlikely that changes in the param- 
eterization of the basic equations will be attractive to 
those already in possession of a workable program 
adequate for problems in hand. The opportunity for 
incorporation of such alternatives at an appropriately 
early developmental state presents itself in the 
approaching generation of photogrammetric 
problems. 

Any use of the phrase “new parameters” below is 
for convenience of designation only. The underlying 
results are in fact very old, attributable to Euler, 
Cayley, Hamilton, Rodrigues, Gauss, and others. 
Similar alternative parameterizations of rotations 
have been surveyed in the photogrammetric litera- 
ture by Schut (1959), who has given the basic 
equations and pointed out some applications (Schut 
19,61). Similar parameterizations have been con- 
sidered previously by Rinner (1957) and Allen 
(1954-55). This report aims to extend the con- 
sideration of such an alternative parameterization 
to include the exact manner of its integration into a 
large simultaneous analytical adjustment procedure, 

using observation equations and Newton-Gauss 
(Taylor series) iteration. 

It has to be conceded that this alternative 
parameterization is not as intuitively simple to 
formulate and visualize as is the usual parameteriza- 
tion, for example, in terms of 4, a, K ,  in spite of the 
simplicity and attractiveness of the final computa- 
tional formulas. This is, partly due to the lack of a 
unified exposition of the relevant proofs and geo- 
metric interpretations underlying these parameters 
and aimed at the photogrammetric user. In fact, 
potential photogrammetric users may be dis- 
couraged because of a certain amount of algebraic 
bL messiness” and complexity apparently inherent in 
this parameterization in contrast to the conceptual 
simplicity of the conventional 4, o, K approach. It 
is believed desirable to understand why the com- 
putational formulas work before they are used and 
that such understanding will inevitably lead to 
their increased use. Thus, another goal of this report 
is to give such a unified exposition using modem 
notation and avoiding algebraic ‘‘messiness,” where 
possible. 

A third aim of this report is to draw a connection 
between the proposed alternative parameterization 
and an increasingly used formulation of differential 
rotations (Lucas 1963, Brown and Trotter 1969, 
Gyer, Lewis, and Saliba 1967). The parameterization 
considered here may be viewed as a logical exten- 
sion of this line of thought. Because of this, a dis- 
cussion of differential rotations in the conventional 
parameterization, while not a neces,sary part of a 
minimal description of the alternative parameteriza- 
tion, is given to provide explanatory parallels and 
useful auxiliary formulas. The basic ideas relating to 

1 



differential rotations are found in Frazer, Duncan, 
and Collar (1938). 

PRELIMINARY DEFINITIONS 

Various notation and sign conventions need to be 
established at this point. Starting with the colinearity 
equations in vector form, we have 

where x and y are plate coordinates of an image 
with respect to an origin at the principal point, and 
c is the focal length. X, Y, Z are the ground coordi- 
nates of the object whose image is at ( x ,  y); XO, Yo, 
Zo are the coordinates of the camera station;'and s 
is an initially unknown scale. Dividing the first and 
second equations by the third to eliminate s. we 
have the colinearity equations in the conventional, 
divided, solved form 

( 9  y = c -  r 
where 

M, the main object of interest in this report, 
is a 3 by 3 orthogonal matrix for which the conven- 
tional photogrammetric parameterization is a special 
case of 

M = R i ( a ) R j ( P ) R k ( y )  (3) 

for some choice of ( i ,  j ,  k )  and identification of 
(a, p, y). The particular choice varies and is essen- 
tially immaterial, although specific examples are 
considered for illustration. 

In fact, another underlying motivation of the ap- 
proach to rotations discussed here is to show that 
many interesting and useful formulas, in fact the 
entire analytical adjustment apparatus, can be 
obtained without any commitment to a particular 
choice of ( i ,  j ,  k). The choice, along with the choice 
of primary, secondary, and tertiary orientation 
angles (a, 8, y),  is viewed as a nuisance inherited 
from analog photogrammetry. In the case that a 
particular set of angles, such as 4, o, K ,  is of phys- 
ical interest, the angles can still be easily obtained 
from the alternative parameters by the method given 
in Transformation of Parameters, below. One of the 
motivations for writing this report has been to pre- 
sent general formulas that establish the exact and 
differential relations between various parameters. 

Each successive matrix RI  represents a rotation 
of the coordinate system about the current 1 axis. 
For later reference, the Ri's are spelled out: 

" 1  0 
COS 8 sin 8 , 

0 -sin 8 , COS 8 

COS e 0 -si; e], 
R 2 ( 8 ) =  0 

[sin e cos e 'I. 1 
0 

For example, in equation (3) for ( i , j ,  k)= (3,2,1) and 
(a, f3, y)= ( K .  o. 4) we have 

r C O S K C O S O  sin Kcost$+cosKsinwsin$sin K s i n  4-cosKsinwcos41 
M =  -sin K C O S O  c o s ~ c o s + - s i n  K s i n o s i n 4  

-cos w sin 4 1 sin w 
cos K sin 4+sin K s i n o c o s 4  . 
cos 0 cos 4 1 

The axes are understood to be numbered 1, 2, 3, 
corresponding to x ,  y ,  z; the senses of the rotations 
R3, R , ,  Rt are 1 to 2, 2 to 3, 3 to 1, respectively, 
for positive 8, whether the system be right- or left- 
handed. This specification is independent of the 
viewpoint of the observer. To recapitulate, a rotation 
in the sense of RI  would cause a right-handed screw 

to advance along the positive 1 axis in a right-handed 
system and a left-handed screw to advance along 
the positive 1 axis in a left-handed system. Viewed 
from the positive "end" of the 1 axis, the rotation of 
the coordinate axes is counterclockwise in a right- 
handed system and clockwise in. a left-handed sys- 
tem. Retention of the same convention (1 to 2,2 to 3, 
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3 to 1, for + 8 )  to describe the rotation of a rigid 
body in a fixed coordinate system, rather than a 
rotation of the coordinate system producing new 
coordinates of fixed points, leads to replacement of 
8 by - 8 everywhere in formulas ‘(4a), (4b), and (4c). 

The parameterization of equation (3) represents all 
possible proper orthogonal 3 by 3 matrices; that is, 
having det M=+ 1 and (equivalently) producing no 
change of handedness. It frequently happens in 
practice that the handedness of the ground co- 
ordinate system and the camera coordinate system 
are different, in which case M must be extended by 
the inclusion of one or more permutations, reflec- 
tions, or inversions- represented, for example, by 
matrices like 

0 1 0  -1 0 0 -1 0 0 

0 0 1  0 0 1  
[I 0 01, [ 0 1 01, and[ X -: 
respectively, giving det M =- 1. For the most part, 
it is possible to assume that det M=+ 1 without loss 
of generality by absorbing the change of handedness 
into the equations before or after application of M. 

The case of (i, j ,  k)=(3 ,  1, 3) or (3, 2, 3), the 
“Eulerian angles” of physics and astronomy, is 
seldom used in photogrammetry but is mentioned 
at one or two points below for comparison purposes. 

Distortion corrections and models are not dis- 
cussed in this technical report. The photogrammetric 
model is taken to be completely given by equation 
(2). Alternatives to the observation equation approach 
to the least-squares solution are not considered. 

The u unknown parameters (X, Y, Z at all un- 
known ground points, XO, YO, ZO, a, p, y for all 
cameras) are denoted by vector p, such that 

9 ( U : ~ + U ~ ~ )  is a minimum (where vli=xi(p) -xfbs, 

similarly for vu i ,  and n ( > u )  is the number of 
measured points). 

On the basis of equations (2a) and (2b) the Newton- 
Gauss iterative solution of the least-squares problem 
of finding p’proceeds in outline as follows: The non- 
linear functions x ( P )  and y(P), given in (2a) and 
(2b), are replaced by the linear terms of a Taylor 
series expansion about some preliminary approxi- 
mate values P o  of the unknown parameters P. That 

1= I 

vector of partial derivatives evaluated at P=& and 

Ap=p-po. Thus we have up (linearized)= { X I ( & )  
. .  - X ; ~ ~ } + ~ ” I  AP. Now AplS which minimizes 

, ap P o  
VObP (linearized) can be solved for by the usual 
apparatus of linear least squares; formation of 
normal equations; etc. Then =PO+ Ad:,, and the 
process is repeated with as the n-dimensional 
point of expansion for the Taylor series. Next A&, 
minimizing the sums of squares of linearized 
residuals ui l ,  is found. Repetition of this procedure 
leads, hopefully, since convergence cannot be 
guaranteed in general, to converge to values p 
which minimize the sum of squares of nonlinear 
residuals. 

The main feature of interest here is that each 

recomputation of x ( P ; )  and - in the conven- 

tional formulation necessitates the recomputation 
of M (e.g., by equation (5)) and the partials of I I f  with 
respect to a, p, and y (detailed below). Any new 
parameters must yield competitive formulas for 
(a) computation of partials and (b) “updating” of M. 
From the point of view of a strictly analytical 
approach to photogrammetry, formulas for (a) and (b) 
constitute the whole story of any parameterization 
of M. Additional proofs and geometric interpreta- 
tions are desirable for better understanding, but not 
strictly necessary for a minimal workable solution. 
Because of this and to give a concrete basis for 
subsequent discussion, the yet-to-be-derived for- 
mulas for (a) and (b) are given below as formulas (9) 
through (11). Their form will immediately support 
the claimed advantages of the alternative parameter- 
ization. 

@ ax I PI 

COMPUTATIONAL FORMULAS 

In the discussion of (a), that is to say, the CO- 

efficients in the differential forms,for dx, dy in terms 
of dX, dY, dz, ~ X O ,  d Y 0 ,  dzu and the differential 
changes in the parameters of M, it is convenient 
to group the partials in the following manner: 

Denote 

1 0 -- P 

0 1 -- q 

r 

r 

3 



so that where 

[ : ] = A [ $ ]  

= A  (dM) I 
This grouping is useful in discussing both old and 
new parameterizations. Note that differentiation of 
MMr=Z yields dMM'+MdM'=O,  so that (dMM')  

.=- (dMM') ' .  If AL=-A,  A is said to be a skew- 
symmetric matrix. The most general 3 by 3 skew- 
symmetric matrix can be written in the form 

where Se denotes a skew-symmetric matrix using 

the components of the vector W= [!;I. Thus 

dMM'=Sr,  (74 

d M = S &  (7b) 
and 

in advance of any particular choice of parameters 
for M .  An exactly similar consideration starting with 
M'M = I gives the alternate but unused form 
dM= MSG.  In (7b) W is some as-yet-unknown linear 
function of the differential changes in the parameters 
chosen to represent M. These functions can be 
obtained directly from equation' (7a) or, more easily. 
by the convenient general formulas given below for 
the conventional parameterizations. In the new pa- 
rameterization, the components of 6-01, 0 2 .  0 3 -  

are themselves the unknowns in the observation 
equations, and no further substitution is needed. 

Inserting equation (7b) into (6a) and using equa- 
tion (2b) along with the identities .S,O = - 6 X D 

SEW, where X indicates the vector cross - -ox;;=- 
product, that is, 

[ ;] = L [ :; 
0 3  

+AM 
d X - d X 0  dY-dYO], (6b) 

d z - d z 0  

,-"I- 0 

That is, 

the truly vertical coefficients. For convenience, 
p, q, r are often approximated at the first stage of the 
iteration using the observed x and y. That is, (8a) is 
replaced with 

Whether or not this approximation is used at the 
first evaluation of L, care must be taken to evaluate 
L in subsequent cycles of the iteration using (8a), or, 
what is the same thing, (8b) using the most recent 
adjusted plate coordinates x and y. Failure to do this 
will, in general, preclude convergence of the itera- 
tion to the nonlinear least-squares solution. 

Then, the proposed new parameterization is con- 
tained in the following equations: 

Denote by q the 4-tuple (6, a, 8, y ) .  The iteration 
may be started with &=I,  the 3 by 3 unit matrix, 
and with q o = ( l ,  0, 0, 0). If any auxiliary data are 
available that can be used to establish a better 
initial orientation, the methods discussed below 
under Transformation of Parameters can be used 
to compute 40. 

Observation equations based on (6b) and (8a) 
lead to a least-squares solution for wI, 02, ox and 
differential corrections to other parameters dX, 
dY, . . . at each stage of the Newton-Gauss iter- 
ation. From the current values of 0 1 ,  02,  wa, and 
the current values of the parameters qi=(&, ai, 

P I ,  yi), a new set of parameters, qi+l, is computed, 
using 

4 



(15 products) and .with 

’ l =  82 + ai’ + p’ + yi‘ 
I I  = 1/1 
12 = 211 
&= l’a 

Y = Ii’Y 
e= 12p 

(8 products and 1 division), the updated M is 
computed from 

(9 additional. products, utilizing repeated terms). 
Thus, M has been parameterized in terms of the 

4-tuple q= (6, a, p, y ) .  We shall see that, as ex- 
pected, only three are independent, for example, 
a, p,  y .  The “extra” dependent parameter 6 is re- 
tained to produce more convenient formulas. Note 
that a, p, y in the new parameterization are not 
the same as a, p, y in the conventional parameteriza- 
tion of equation (3). Formulas (9), (lo), and (11) can 
be made more compact by obvious substitutions, but 
the forms given show a sequence of operations that 
avoids needless repetitions of products. 

The advantages of this parameterization can now 
be appreciated by considering equations (9) through 
(11) in 

1. 

2. 

3. 

4. 

comparison with equation (3). 
No trigonometric functions and no square 
roots are needed. 
The total count of operations is small-32 
products and 1 division. 
Particular choices of (i, j ,  k,) are unneces- 
sary. Since in a complex problem it is not 
unusual to find several choices coexisting 
(e.g., different for exterior and interior orien- 
tations), this circumvents a potential source 
of confusion. 
The Parameterization is “more nearly linear” 
than the conventional one. M is only quad- 
ratic in (normalized) q, whereas the formula 
for any trig function involves an infinite sum 
of powers. In fact, Schut (1961) has shown 
that a closely related represeqtation of 
a rotation (equation (28) below), leads to 
a linear solutian in some problems when 
compromises with the rigorous assignment 
of residuals are made (use of equation (28b) 

does not lead to a linear solution in the 
rigorously formulated general analytical 
least-squares solution, however). If an alter- 
native, more nearly linear parameterization 
exists, its use will lead to improved conver- 
gence of the Newton-Gauss, Taylor series 
iteration. A simple example to illustrate the 
point is the least-squares solution of 

vrl + X; = s cos 0x1 + s sin 0yi 

vYi + yi = - s sin exr + s cos 0yi 

i = l ,  . . ., n 

for fixed xi and yi. This parameterization is 
nonlinear and when solved by the Newton- 
Gauss method (not strictly necessary for 
this simple problem), must be iterated to 
produce the least-squares solution for s and 
8. On the other hand, use of the equivalent 
parameterization 

gives a linear, one-step solution for a and b, 
and requires no approximate initial values. 
This is an extreme example of increased 
rate of convergence! 

The fact that the parameterization is only quad- 
ratic suggests a direct rather than the Taylor series 
approach to an iterative solution- that is, moving 
small second-order terms to the opposite side, etc., 
which may be practical for resections, at least. 
This line of thought is not pursued in this report.. 

5. The coefficients of the observation equation 
to be normalized and solved for the (WI, 0 5 ,  

WJS and (a. cly, dZ,  d X o ,  dYo, dZo)’s at 
each iteration are simplified. In fact, they 
always have essentially the functional form 
which, in the conventional approach, is 
associated only with the truly vertical case. 
This is seen from equations (6b) and (8a). 
The observation equations for the con- 
ventional parameterization differ from these 
(in the nontruly vertical case) by the presence 
of an additional. substitution of the form 

i3= C dw , where the coefficients in the 

3 by 3 matrix C ape fimctions of the current 

. 

[:I ’ ’ 
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6. 

values of o and K that are detailed in the 
next section. 
Finally, the above-suggested procedure 
shares the advantages of a method of 
handling differential rotations in photo- 
grammetry which will be next discussed. 

DIFFERENTIAL FORMS FOR THE CONVEN- 
TIONAL PARAMETERIZATION 

From equation (3) we have (see Frazer, Duncan, 
and Collar 1938) 

0 a I =  i, j, k.  Since where RI represents 

MMI = I, RIRI = I ,  and MI = R@jR{,  dM can be 
written 

ae 

0 

where SI = RlRf, 1 = i. j ,  k ,  are skew-symmetric 

matrices having the form SI = S;,. Here E l  = 

. The notation SF, Pa vector, 
Lo1 L1J 

0 r3 - r2 
, as before. This is 

confirmed by direct computation of the products 

k R I .  
The following properties hold for skew-symmetric 

matrices: 

(a) kSi = Ski9 k a scalar 

(c) M S f l t =  STwhere T= Mi, M proper 
orthogonal 

(d) A'SA = SF' wheEe T = k  for arbitrary 
square A.  Here A = (adjoint matrix of A ) =  
(det A )  A-1 for non-singular A. ' 

Formulas (a) and (b) can be directly confirmed. 
The transformation formula (d), of which (c) is a 
special case, can be derived by direct expansion and 
use of the triple inner product A . ( B  X C) as follows: 
Denoting the Ith column ofA by 61, the ij th element 
of A'SJ is -dr- ( i  X dj) = (ai X dj )  s i .  Note that 

(b) S i , + S i I = S  (F, + i s )  

dr Xdi=O and iii X(zj=-(zj X i i i ,  SO that A'SjA is 
directly seen to be skew-symmetric, a fact already 
known from application of the definition Sf=-S to 
A'SjA. The elements of Sr;'=A'S,A are 

but this matrix is the adjoint of A. A lengthy proof of 
(c) is found in Goldstein (1950, page 118) and (d) 
allows extension of the following results to improper 
rotations containing permutations, reflections, 
and/or inversions. 

Using these results in the order (c), (a), (b), we 
see that 

d M = S f l ,  (12) 

SF as before, and i= Sida + RiEjdp + RIR,&.dy (note 
similarity to equation (7) above). This can be 
written as 

r= c [ 51, (13) 

where 
C= [ Z i  I RiZj I RiRjZk] - (14) 

(Note R&= ZI so that &RjEk= M z k .  Also, note that 
A Z k  is the kth column of A for any 3 by 3 A.) 

An exactly similar procedure will yield the alter- 
nate form dM = MSTwhere 

- 
r'= M'r= C' [ 51 

This is also seen directly from dM=M(M'S-f l )  
and (c) above. 
C is a 3 by 3 matrix. For example, in the case of 

(3,2,1), ( K ,  a, 4) above 

COS K COS 0 1 sin K 

0 sin o 
C = E  cos K -sin K cos o . (15) 

6 



The important point about equation (13) in this 
discussion is that it constitutes an exact linear 
substitution with a unique inverse solution, except 
in the case det C=O. That is, 

An easily proved invariance property of linear 
least squares is that the values of da, dp, dy,  
obtained from a least-squares solution of observa- 
tion equations in which da. dp, dy appear explicitly 
as unknowns, are equal to the vahes of da, dp. 
dy computed by equation (16) from values of rl ,  
r2, 1-3. These are obtained from a least-squares 
solution based on observation equations in which 
(13) was not substituted, so that rl, r2, r 3  appear 
explicitly as unknowns. The, latter procedure is 
attractive because it yields observation equations 
that are simpler by the omission of all C matrices 
(note that 

is also sui-h an exact linear substitution, although 
in the general problem 

is not, since ground points are seen by more than 
one camera, and therefore dX, dY, dZ have more 
than one M as coefficient). There is an analogous 
invariance property for nonlinear least-squares 
problems. Although apprqpriate, it is not used 
here, since each stage of the Newton-Gauss method 
is a linear least-squares problem. 

Although the computation of C-’, numerically 
or algebraically, presents no real problem and we 
find that the q parameterization avoids t-he need, it 
is of interest in this connection to note the following 
explicit forms for C-l. Two cases are distinguished: 

1. (i, j ,  k) distinct: 

r l  0 s tanB1 

is the angle associated with R j  as inequation 

[ + 1 for (i, j ,  k)=a cyclic permutation of 

(31, and 

(1,2,3) 
- 1 (i, j ,  k) # a cyclic permutation of “1 (1,293). 

Also, note that det C= cos p. 
2. (k, j ,  k): In practice, only (3,2,3) or (3 ,1,3)  

are considered (Eulerian angles), and the 
two are related by 

Now define s by sCf=Zj X 8. 
Then 

s cos p 0 1 

-ssecP 0 0 
C-l=BE‘Rk, where B=[ 0 1 01, 

and det C = s sin p. 

case of equation (15) yields 
As an example, formula (17) applied to the same 

-cos K tan OJ sin K tan w 1 

cos K sec w -sin K sec w 0 
COS K 03. 

It can happen, in unusual but possible cases, 
that det C=O, so that C-’ does not exist. The 
differential correction formulas for the q parameters 
avoid this problem. 

Results similar to the above have been used by 
photogrammetrists in (a) simulation studies, (b) 
resection solutions, and (c) in derivations of differ- 
ential relations between alternate choices of ( i , j ,  k) 
and (a, p, y ) .  For the general analytic problem 
using Newton-Gauss iteration and a conventional 
parametrization like equation (3), it is still necessary 
to compute at each iteration as many C’s (or C-l’s) 
as there are 

cameras in order to get dp for addition to a, p, y. 

a, p, y are then used in an equation like (5) to 
compute the new M needed in the coefficients and 
constant terms of the observation equations. It 
makes little difference in the number of operations 
whether the C‘s or C-l’s are computed before or 
after the linear least-squares solution at each stage. 

[I 
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This undoubtedly explains why most large ana- 
lytical solutions are still done in terms of d4,  dw, d K  

or similar angles, and why no attempt is made to 
take advantage of the simpler form of the observa- 
tion equations obtained by omitting C. A genuine 
saving results if one can bypass the computation 
of C and/or C-’ altogether and compute an orthog 
onal, updated M directly as a function of rl. r2, r3 
(recognizable as equivalent to WI , w ~ ,  0.7 of equation 
(7b)). The q parameters achieve this to a surprising 
degree. 

DISCUSSION OF THE ALTERNATIVE 
PARAMETERIZATION 

In line with the motivations mentioned above, 
this discussion is divided into five sections: deriva- 
tion and interpretation of the basic formulas and 
various auxiliary formulas; development of differ- 
ential forms for the new parameterization; leading 
into the choice of formulas for use in the photo- 
grammetric application; the general method for 
obtaining, and examples of, formulas which make 
possible inverse and direct transformation from the 
new parameters to other parameterizations; and a 
small numerical example. 

Derivation and Interpretation of Formulas 

The following development has as its goal a 
concise derivation of all the formulas needed in a 
photogrammetric application. of the q parameter- 
ization. In addition, several nonessential formulas 
and various geometric interpretations will be 
obtained. All of these contribute to a better under- 
standing of the q parameterization and an apprecia- 
tion of its close connection to various alternatives, 
which at first sight may appear unrelated. 

Surprisingly, it is much easier to obtain the de- 
sired formulas for 3 by 3 orthogonal matrices by 
using a particular kind of 4 by 4 orthogonal matrix, 
which is now defined. Use of 4 by 4 matrices is not 
a necessary part of the proof, but it greatly simpli- 
fies and clarifies the algebra involved. With q= (6, 
cy, p, y ) ,  real values, as before, define 

and u = (62 + a 2  + f12 + f ) ‘ I2 > 0. It is easily veri- 
1 fied that Prq=QiQ9=u21 ,  so that P i = - P ,  .and 
V 

1 Q;=; Q, are orthogonal 4 by 4 matrices. 

If u2= 1, q is said to be normalized and is de- 
noted i. A given q can always be normalized by,di- 
viding by u; i = q/v. A normalized i contains only 
three independent parameters - arbitrarily taken to 
be CY, p, y. The fourth component of 4, 6, is deter- 
mined from 0,  p, y by the constraint Sztaz-tpz 
+r2 = 1. The notation will usually indicate whether 
one is dealing with a normalized + or unnormalized 
q ,  as one or the other becomes more convenient. 

Since P;, and Q;* are orthogonal, so is Gl,iz 
=P;,Qa. In fact %,A, is the most general 4 by 4 
proper orthogonal matrix, for in 4, and Q there are 6 
independent parameters (the 10 independent 
orthogonality conditions contained in T‘T = I 
imposed on the 16 elements of T leave 6 independent 
parameters to be specified). This fact is of only 
passing interest here, however. Of more interest 
is the fact that the most general proper orthogonal 
3 by 3 is obtained from a special case of Ti1,i8. . 

With il = i2 = 4, denote Ti,,;,= Ti. , Performing 
the multiplication T;= Pqe;.  we find 

where M is a 3 by 3 matrix whose terms are found 
to be 



Since Tij is orthogonal, 

r1 0 0 01 

M f M =  I ,  

so that M is orthogonal. Direct expansion of det 
P ,  and det Qq yields det P,=det Qq=u4 > 0. 
Also, since det M=det Tij = (det P i )  X (det Qij), 

and det P 4 = det Q;= + 1 because u2 = 1, we have 

det M=+ 1 

so that M is proper orthogonal, that is, includes no 
change of handedness. Only proper orthogonal 
3 by 3’s are parameterized by equation (19a) for 
real parameters, and changes of handedness are 
introduced when necessary by combining M with 
one or more inversions, reflections or permutations, 
as described above (page 3). If q is unnormalized, 
it is easily seen that an orthogonal M is given by 

which is the same as (19a) with the insertion of a 
factor l /u?.  The computational significance of (19b) 
is that the presence of u2 enables the square root 
to be avoided that would otherwise be involved in a 
normalization using division by u. 

That M defined in (19a) is the most general 3 
by 3 proper orthogonal matrix follows from the fact 
that the 6 independent orthogonality conditions in 
M‘M = I imposed upon the 9 elements of M leave 3 
independent parameters to be specified, and M is 
defined in terms of 4 containing 3 independent 
parameters. On the other hand, (19b) contains four 
parameters so that there are an infinite number of 
sets of 6, a, p, y (unnormalized) that produce a 
single orthogonal M by (19b). In (19a), notice that 
4 and - 4 produce the same M, a fact whose geo- 
metric meaning will later become apparent. Other 
than this, the correspondence between proper 
orthogonal matrices M and the three independent 
elements of normalized 4 defined by equation (19a) 
is one-to-one. 

The use of the 4 by 4 orthogonal forms P and Q 
has allowed us to “discover” and prove the q 
parameterization of equation (19a). In a similar 
manner, use of P and ,Q lead to “discovery” and 
proof of other useful form’ulas. 

From equation (18) for P and Q, note that P = P i  
and Qb = Q,, where Q = (6, - a, - p, - y ) ,  q = (6, 
a, p, y). Q is called the hyperconiplex,conjugate of 
q because in the i, j ,  k. representation discussed 
below it is the analogy.of the conjugate of a complex 
number. 

The product P ,  Pql is found to be another matrix 
of. the form Pq3, and the product Qqr Qql can also be 

verified to result in another matrix of the form Qq3 

where, in both cases, q.9 is given by the equations 

These are probably more easily remembered in the 
form 

q 3  = Q q r ~ l i  3 

where q3 and qI are understood to be column vectors 

like q = i ] ,  and Qq is defined in (18). 

and is denoted by 
q3 is called the quaternion product of q z  and q1. 

93  = QZ*QI. 

(The sign differences explained below between q 
and Hamilton’s quaternion, qfI= 4, must be borne in 
mind when comparing (20) with, for example, the 
quaternion product defined in Whittaker (1904), 
page 9. Equation (20) correspoiids to Q H ~ Q H , . )  

By comparing the two products, it is seen that gen- 
erally q z * q l  # ql*q-, that is, quaternion products are 
noncommutative. In summary, 



Whereas the quaternion product does not com- 
mute, a directly verifiable.property of P and Q de- 
fined in (18) is that they always commute, that is, 

Using (21) and (22) we have 

a result that is difficult (or at least algebraically 
"messy") to "discover" and prove by any other 
route. 

QtQ 4 Q  = QPQ; = u2I = u'Q I ,  where 
1 = (1 ,  0, 0. 0) and QqlQqz = QqI*qg, we have 
q*q=q*q=u*I  or q - ' * q = q * q - I = I  for any q 
where q-1  is defined as q/u2. For normalized 4 

4 - 1  = 4. (24) 

Since 

- 

Using equation (23) and noting that MI = I ,  we see 
that MqMq-l  = I. These formulas are helpful in 
formulating the differential forms for the q param- 
eterizations discussed in the next section. 

Since with u2 = 6' + a? + p2 + y' as above, 
PblPql = u f I  and pd, P, = u l l .  We now have, using 
Pq3 = Pq,Pql in P&Pq, = u:Z where 43 = q'*qI, the 
equation 

Thus if and q2 are normalized ( u I  = 1 and 
uz = 1 )  , 93 = qz*ql is also normalized. 

Equations (19b), (20), and (25) are the ones needed 
for. photogrammetric operations. However, it is 
interesting to digress at this point to discuss the 
concept of a quaternion, the fundamental and 
useful properties of which have in fact already 
been derived above but which are usually ap- 
proached somewhat differently. While Hamilton's 
quaternions have a certain intrinsic fascination and 

historical interest, one hastens to point out that 
further discussion of quaternions is unnecessary 
once the above formulas are in hand. Quaternions 
have the reputation of being obscure, complicated 
and old fashioned - perhaps deservingly. Their 
ill-repute probably springs from early attempts to 
force the quaternion apparatus to do tasks that are 
now done more simply by vector and matrix methods. 
The chief interest here is the way in which qua- 
ternion-related formulas can be used to parameter- 
ize rotations. This is, in the writer's opinion, a use 
for which quaternions are particularly well suited, 
whatever other shortcomings they may possess. If 
we take I P ,  E P ,  J P ,  K P  and IQ,  EQ,  JQ, KQ to be P and 
Q, respectively, for 

then it follows that Pq = 6Ip - (YEP - - ~ K P ,  
QP = ~ I Q  - ~ E Q  - NQ - ~ K Q ,  and in both groups 

Furthermore, all of I P ,  E P ,  J P ,  and K P  commute 
with IQ,  EQ, JQ,  and KQ.  The two systems I, E, J ,  K 
have the same multiplication table as 1, i , j ,  k where 
i, j, k are the so-called hypercomplex units which 
give a generalization of the idea of a complex 
number. Then Hamilton's quaternion is the hyper- 
complex number d+ai+bj+ck .  In this paper, q 
denotes the hypercomplex number given by 
q = 6 - ai - pj - yk. The minus signs are inserted 
so that all formulas are consistent from the begin- 
ning with an M representing a rotation of the 
coordinate system, whereas the positive hyper- 
complex units i, j ,  k defined by Hamilton are more 
appropriate for M' representing either motions of 
points in a fixed coordinate system or a sign con- 
vention for rotation angles opposite to that used 
here. This procedure is suggested by that of 
Courant-Hilbert. 

Because of the correspondence between 1, i , j ,  k 
and the basic 4 by 4 matrices I, E ,  J ,  K ,  it follows 
that the product of q? and qI produced by multi- 
plying out (&-a2i-p2-y2k) (61 -a l i -pd -yIk )  
and collecting terms coefficient to 1, - i, - j ,  - k 
after use of the above multiplication table for 1, i, 
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j ,  k is the same as that in (20) above. Here, it is more 
expedient to visualize q as a 4-tuple subject to a cer- 
tain product rule, rather than as a hypercomplex 
number. 
As an example of the use of the hypercomplex 

numbers to express relations that for most pur- 
poses are more readily expressed in matrix-vector 
notation, the quaternion version of z ' = M z ,  - M 
given in terms of 4 by (19a) is x' = i * x * i ,  where 
x = x l i + x i + x 3 k .  and x ' =  x:i+ix$,+lx% The 
writer finds it much easier to use the 4 by 4 or 3 by 3 
matrix forms wherever possible rather than hyper- 
complex numbers even though from a purely 
mathematical point of view the two are equivalent. 

The history of quaternions makes interesting 
reading. There are numerous anecdotes associated 
with their development (Newman 1956). Also, see 
Whittaker (1904), Ames and Murnaghan (1929), 
and MacMillan (1936) for concise presentation of 
the basic quaternion formulas derived above. 

The geometric significance of the 9 parameters 
can be deduced from the 4 by 4's considered above. 
The first column of PqPb=I can be written Pqq= 1 
where q' = (8 ,  a. p,  y )  and 1 '=  ( l , O ,  0 , O ) .  Since 
Qql = q,  we have Q q P d = q  or, since P and Q com- 
mute, Tq9= q where Tq= P d q ,  as before. Recalling 
the submatrix form of T,, this gives 

Mr= r 

where the vector P= P . This implies that i: must be 

a vector along the axis of the rotation represented 
by M, since only these vectors are not changed by 
the rotation. 

The equivalence of every proper orthogonal 3 by 3 
matrix to a rotation about an axis is a result known 
as Euler's Theorem. The axis is designated the Euler 
axis (not necessarily a coordinate axis), and the 
angle of rotation about this axis is called the Euler 
angle (not to be confused with the Eulerian angles 
mentioned elsewhere). For a detailed proof and dis- 
cussion, see Goldstein (1950). 

To find the significance of 6 and of the length of 
i(denote ~ = I P I = ( L U ~ + P ~ + ~ ~ ) ~ ~ ~ =  (1-62)1/2since 
6'+ r2= 1), consider the trace (sum of the diagonal 
elements) of the matrix M, tr M. From (19a) this is 
462 - 1. If we have 3' = MZ and 9=  M13, 9' = M19, 
then 9' = M29 where 

[:I 

M2 = M1 MM {. (26) 

Equation (26) is the transformation formula for M 
corresponding to a rotation of the coordinates 2 and 
Z' by MI (note in passing that the quaternion form 
of this formula readily leads to the above-mentioned 
equation x' = i* x W i . )  

Furthermore, since tr AB=tr BA, tr M2= tr 
MM:Ml=tr M, so that the trace of M is invariant 
with respect to rotation of coordinates. Specifi- 
cally, we may consider trace I I f  in a coordinate 
system in which the Euler axis is the 3 axis so that 
M =  &(e). 6 the Euler angle. Then tr M =  tr 
&(e) = 1 + 2 cos 8 and by the invariance of the 
trace, 

1 + 2  cos e = 4 ~ - i  

or 6= cos 8/2, leading to r= (1 - Sz)l'?= sin 8/2. 
i=F/r ,  the vector of direction cosines of the Euler 
axis, can be written 

i= cos 4 sin A 
cos *] 

where 4, A are the spherical latitude and longitude 
of the Euler axis. 

In summary, 

e 
S=cos - 2 

e 
cy= sin - cos (b cos A 2 

e p=sin - cos 4 sin A 

y=sin t sin 4 
2 

Equation (27) establishes the geometric meaning 
of the q parameters in terms of the direction cosines 
of the Euler axis and the Euler angle 8. If 8 is re- 
placed by 8+ 360°, q is replaced by - q ,  but the two 
rotations, insofar as they affect the coordinates 3, 
are equivalent. This is the geometric sense of the 
fact, noted above, that q and- yproduce the same M. 

There are several more interesting eometric 
interpretations of rotations in terms of spherical 
triangles or stereographic projections that are 
closely related to the q parameterization (see Ames 
and Murnaghan 1929, and Whittaker 1904). Only 
one additional geometric interpretation will be 
considered here -one giving a geometric inter- 
pretation of the formula 3' = ME 
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From equation (19b) the following representation 
of M follows by direct expansion and comparison, 
using + aZ + pz + yz = vz: 

S; a skew-symmetric 3 by 3 with i=  

vz= 1, 
(284 M=1+26 SF+2S:: 

Therefore, using S# = - ( i  X 3) , 3‘ = Mz becomes 

R’ = ~ - 2 6 ( i  XR) + 2i X ( i  XR). (29) 

Each term in this equation has a geometric inter- 

pretation. Substituting 6=cos - i= sin - r produces e e -. 
2’ 2 

z’=R-sin 8 (i xz) + (1 -cos 0); x (i xz). 

Assume z to be in the plane of the page and to 
be out of the page, and consider the vector 3 to 
move Z+Z‘ in a fixed coordinate system so that 8 
represents clockwise rotation about F. Then (29) 
has the following interpretation 

- 
A X 

where 3’ = z + dl + $. A similar construction 
applies when i and R are not perpendicular. 

The choice of the sign conventions for 8 and 
f. in terms of 9 were not emphasized in the develop- 
ment to this point. Probably the most convenient 
way to pin them down “after the fact” is to note 
that substitution of equation (27) into (19a) for the 
case i f  = (1, 0, 0) ,. for example, yields RI (e). and 
therefore the well-established conventions for the 
Ri’s apply. Mq defined as in equation (19) represents 
a right-handed screw rotation about the posjtive 
Euler axis: Where a choice of either plus or minus 
is possible (e.g., a square root) in the above develop 

ment, it has been made to conform with previously 
defined Rl‘s. 

One additional useful formula can be obtained 
from the 4 by 4’s with ‘ease. Since P& = Ti and 
Qi’  = Qb = QG, it follows that Pd = T&. Ex- 
panded in submatrix ‘form, this gives 

(61 + S,) = M(61 - .Sr)  

M = (61 + Si) (61 - Sr ) - l  

or 
(28b) 

when the inverse exists. Similarly, using Pi.’ = P a ,  
one obtains M = (61 - S;)-l(61 + S:). These equa- 
tions are ‘the basis of an application of the 9 param- 
eterizations to absolute orientations’ by Schut 
(1961). 3‘ = MR becomes (61 - Sr)R’ = (61 + Si )%,  

or 6(z’ - %) = SF(2 + 3). Letting s = - i and 

using SF7 - Sf, this becomes R - R’ = Si# + is, 
an equation linear in 5. From the least-squares 
solution for S with the residuals on these equations, 

Most of the above results are collected under the 
headings of Cayley’s theorem and Hamilton’s 
theorem on quaternion products, which along with 
Euler’s theorem, contain the entire story of the 9 
parameters (see. Courant and Hilbert 1937). At- 
tempts to trace the specific results back further than 
this only result in a proliferation of trivial algebraic 
variations which obscure the unity of the subject. 
One motivation of this report has been to emphasize 
this unity by suggesting that various parameteriza- 
tions of rotations, for example those surveyed by 
Schut (1958-59), are in fact very closely related. 
This is true also of additonal variations, such as the 
Cayley-Klein parameters, not covered here. 

1 
6 ’  

6 2  = 1/(1 t Is12) and r =  6s. 

Development of Differential Forms 

D-ifferential rotations as discussed in this report 
are closely related to discussions of angular velocity 
in, for example, Frazer, Duncan, and Collar (1938). 
Whittaker (1904) gives a formula for the angular 
velocity vector in terms of a quaternion parameteri- 
zation. None tell the entire story however. If one sets 
q’=q+Aq=Q*q where Q=I+Aq*q-I, then 
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where, using q-l=q, Q=l +Aq*q-' is explicitly 
given by 

to the first order in  the increments, 6A6+aAa+ 
PAP + yAy = 0, so that 

If we define i i = 2 i ~  (for reasons shortly apparent), 
we have, produced by use of the differential form (38), there 

is a choice between q'=q+Aq, where Aq is ob- 
tained from & by (35) and (31), or 9'=Q*q. where 
Q is given by (32) and (37). That is, 

(34) 

where CQ is two times the 3 by 3 coefficient matrix of 
(33). Compare (34) to equation (13). Also note that 

(35) 

where Cil is given by 

as can be directly confirmed in C;'C, =I. 
If one substitutes Q given by equation (30) into 

M4 given by equation (19a) or equation (28a) and 
discards all terms of second order in Aq, the result is 

Thus the change in M due to the change in q, 
AM = Mq+Aq - M ,  = Mqe - M,, with Me = MQM,, is 
given by 

A M = S J 4  (38) 

as expected for any parameterization [equation 
(7b) aboyel. 
TO compute q' from the leaspsquares value of 

i;, resulting from the observation equations (6b) 

(39) 

Substitution shows the two procedures to be 
equivalent. Use of q' =Q*q from the beginning, 
leading directly to equation (38) and equation (39), 
would have given a derivation in which CQ and Ccl 
never appeared. They were introduced here to 
further the analogy with the conventional parame- 
terization and to support the claim made earlier 
that in the q parameterization, C or C-' need never 
be actually computed when q'=Q*q is used. A 
second, no less important reason is that CQ com- 
pletes the partial differentiation of x and y with 
respect to the new parameters, thus showing that 
the observation equations (ab) are equivalent to 
those required by the Taylor. series, Newton-Gauss 
formalism with the addition of the exact linear sub- 
stitution in equation (35). 

Two comments can be made about equation (39): 
(a) Q, based on f%=2?Q from equation (37) and 
SQ= 1, is normalized to the first order only. If we 
do not renormalize q, the resulting M matrix will 
be a scalar times an orthogonal matrix. To avoid 
this, Q can be renormalized by Q=Qju, 
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or, by equation (24), 9' can be renormalized, or, and 
this is the preferred computational procedure; the 
renormalization is postponed until the computation 
of M-equation (19b)-in which case the square 
root is not needed. Another possibility is that the 
scale be left in M and q and removed only at the 
last step of the Newton-Gauss iteration, but for 
simplicity this is not done here. (b) Equation (39) 
is not the only way of establishing an equation valid 
to the first order relating 0 and Q; other possibilities 
result from the retention of some second order 
terms in Q. Specifically, a natural procedure, one 
also appropriate for the quadratic iteration men- 
tioned earlier, is to perform first the exact substitu- 
tion 6 = 26i'4, obtaining 

os 5 4 

in - 4 2 

0 

0 

where 1= 1 + (1 - 1 0 1 ' ) ~ ' '  and then drop second 
order terms in ij, again giving equation (36). This 
possibility is mentioned only to point out its rele- 
vance to the direct quadratic iteration and to point 
out that the conventional parameterization and 
equation (40) both produce equations relating 
.W and Q which possess singularities at which 
the Newton-Gauss procedure would break down 
but that the adopted choice is free of singularities. 

Choice of Computational Formulas 

Various alternative computational procedures 
are possible using the above formulas. M can be 
updated by either (29a) or (29b). ?=MZ can be 
computed from (a) M,z. (b) l 4 Q Z i - l  or, (c) the cross 
product form of equation (29) above. Several 
combinations are possible. Each combination is 
examined in detail to determine the number of 
products needed. This is a matter of counting 
products, etc., which is not repeated here. The 
writer's conclusion is that the best procedure is 
the following: form Mqv from q' = Q*q, renormalize 
q' during the formation of M, and compute 3' = MZ 
by multiplying M times 3. This yields formulas (9) 
to (11) above. 

cos ?COS " 4  5 

0 4  
. 2  2 

' w  4 =sin ,cos 5 

cos -sin - 

sin - 0 4  sin - 
2 2  

Transformation of Parameters 

Formulas for q in terms of the Eulerian angles 
are given in Whittaker (1904, page 11). The following 
procedure yields formulas for computing q from 
any given cy, P. y in R i ( a ) R i ( P ) R k ( y )  and vice 
versa. The formulas for the Eulerian angles are a 

special case of this procedure when (i, j ,  k)= 
(3,233). 

Using equation (27) for the elementary rotations 
&(e), 1 = 1 , 2 , 3 ,  q takes the forms, 

) (41) ( 2 8  2 

( e  

e R 2 ( e ) ,  q2 = cos -, 0 , sin -, 0 

R : , ( e ) ,  qS = cos 5, o , 0 , sin i). 
We desire q such that Mq= R i ( a ) R j ( P ) R / i ( y ) .  
Two successive applications of the quaternion 
product formula, .equation (20), give q either 
numerically or algebraically. For example, with 

before, we have q = q 3 * q v q l ,  where 91, 4.2, 9.7 are 
given by equations (41) with 8 =  4, w ,  K ,  respec- 
tively. Thus qz*ql, for convenience written in the 
form Qqrql, gives the intermediate result 

(i, j ,  k )  = (3, 2, 11, (a ,  p ,  Y) = ( K ,  0 ,  $4, as 

0 0 
:os - 0 -sin - 0 2 2 

w w 
0 cos 5 0 -sin - 2 

sin y 0 

0 sin 3 0 

w w 
cos - 0 2 

w w 
cos z 

and similarly q = q3* (qi*qI) gives the desired 
formulas 

K O 4  K O 4  6 = cos - cos - cos - - sin - sin - sin - 2 2 2  2 2 2  

K O  K O 4  
cy = cos - cos - sin $ + sin - sin - cos - 2 2  2 2 2  

K W  K " 4  P = - sin - cos - sin $ + cos - sin - cos - 2 2  2 2 2  

K O  K O 4  y = sin - cos - cos * + cos - 2 sin - 2 sin 2' 2 2 2  

(42) 

The same procedure with (i, j ,  k) = (3, 2. 3) and 
(a, p, y )  = (I,!J, 8, 4) gives, after use of elementary 
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trig identities, q in terms of the Eulerian angles The first and last members of .these equations 
give (4, w, K ) ,  ($, 8, $1, etc., in terms of elements 
of M, should this be needed. It is perhaps worth 
pointing out that the procedure for computing q 
from a given M is extremely simple: denote by Sfi 
the skew-symmetric part of M (any square matrix 
can be written as the slim of symmetric and skew- 

8 $+4 6= cos - cos - 2 2 

a= sin e - sin 2 
$-4 

2 

8 $-4 

6 $+4 
2 2 

P= sin 5 cos - 

y=cos - sin - 

2 

which may be compared with Whittaker (1904, 
page 11). 

The most expedient formulas for computing 
(a, P,  7) in Rj(P) &(Y) for given (i, j ,  k) 
and q are obtained by equating corresponding ele- 
ments of M expressed in terms of q by equation 
(19a), and M expressed in terms of R i ( a )  R j ( P )  

& ( y )  by, for example, equation (5). For 

as above; equating elements of equations (19a) and 
(5) we have 

cos w sin K = 2 ( 6 y - a / 3 )  
COS w cos ~ = 6 ~ + a ~ - P ~ - y ~ =  

cos w sin 4 = 2 ( 6 a - P y )  

=- m!! I 

ml I 

=- m3 2 

sin 0 = 2 ( a r y + 6 P )  = ma I 

COS O cos 4 = 6 2 - a 2 - P 2 + y z =  m:ln 

which are easily solved for K ,  w, 4. For the Eulerian 
angles (i, j ,  k)= (3, 2, 3) ,. (a, P ,  7) = ($. 8, 4): 
the corresponding formulas are 

sin 8 sin 4 = 2 ( p y - & )  = m3 2 

sin 8 cos 4 = 2 ( a y + 6 p )  = m3 I 

sin 8 sin $ = 2 ( P y + 6 a )  = ni2 3 

sin 8 cos $ = 2 ( 6 p - a y )  =- ml3 

cos e - 6 2  - 4 2 -  p 2 +  y2' m3 3 
- 

obtained by equating corresponding terms of (19a) 
and the explicit form of M for the Eulerian angle 
given, for example, in Whittaker (1904, page 10). 

1 1 
2 symmetric parts, A =- ( A  + A t )  +: ( A  - A ' ) ) ,  that 

is, the middle term of (28a) 
1 s, = 5 (M - M') = 26s,-. 

Then from (19a) or (28a) 

Also, from the trace of M, tr M = m, I + m2 + nin .1 

=46"1, one has 26= ( l + t r  M)lP2, so that i;= E] 
1 -  is given by i:= - u. 

26 

Differential relations between Aq and Aa,  AB, Ay 
corresponding to these exact formulas are already 
easily available from the various C's derived above. 
However, note that Aq is never needed. The un- 
knowns in the least-squares solution are w1, WZ. w3 

and Aq is bypassed altogether in the updating of M 
by formulas (9) through (11). Differential changes in 
any additional orientation constraints or observa- 
tions, such as horizon cameras, stellar or sun 
cameras, and inertial platforms, that can be con- 
veniently expressed in terms of any particular 
parameterization, are related to w1, 0 2 ,  w3 by the 
matrices C and C-l. 

Numerical Example 

If we take q =  (a, a3, u3, u2)  where u =  l/*, 
corresponding to 28, 4, h = 45". then Y* = 1 and 

2 + f i .  1 .[' 2 + v 2  - 2 + f i  2 

' 1 + 2 *  - 2 + v 2  

M = -  1-2fi 1 
4 

15 



The orthogonality of M can be directly verified by M‘M = I. To ten decimal places M and q are 
.95710 67812 - .14644 66094 

.85355 33906 , 

.50000 00000 I .25000 00000 

.45710 67812 .25000 00000 

.85355 33906 - .14644 66094 

q =  (.70710 67812, .35355 33906, .35355 33906, .50000 00000). 
The three points 3 = E l ,  E p ,  G are transformed by 
this M into Z I ,  &,a3,  the columns of M. 

Consider the problem of finding the M that 
transforms E , ,  E. .  E3 into a,, zZ. 3:s all given as above. 
Generally a least-squares solution is required. This 
particular problem has an exact solution, which 
means that the residuals can all be reduced to 
zero. This problem can be solved in one step by 
use of (Sf-S)-i(Sf+S) as ‘outlined above or 
otherwise. Here, a Newton-Gauss iteration is used 
to illustrate the computational formulas of interest. 
From 3’ = Ma, the linearization yields at each of 
the three points the three observation equations (at 
the ith iteration) 

0 = Mi3 - 3’ + 
or 

where 

This can be written as 

8 = a; - 3‘ + s a ;  

2; = Mp. 

S , p = ( a ;  -3’) - fi, 

leading to normal equations N i j =  U. 
Because of the orthogonality of Z and therefore of 
2; in this particular problem, one finds, for example, 
by direct expansion, that 

Also note that 

so that 
Sh; (a; -a ’ )  =-S[P!R’=S$’a; ,  

u= si, 2; I I + si, a; I ‘‘ + si, a; 1:s. 

These two results simplify the formation of the nor- 
mal equations at each stage of the Newton-Gauss 
iteration and apply to this problem only. Any. such 
simplification is desirable in this illustration, since 
there is no interest here in the formation and solu- 
tion of normals, a procedure assumed to be familiar 
to everyone. The interest is in the rapidity of the con- 
vergence of qr and Mi. The columns of Mi are the 
computed coordinates 3Fi = Mia at each step. The 
iteration starts with go = (1, 0, 0, 0) , producing MO 
=I. U is conveniently formed by writing the num- 
bers in the array form 

Spp ai’ point 1 
Sfo Z/ point 2 

Spe 3; point 3 
with column-by-column accumulation of products. 
This array and the resulting normal equations are 
fully given in table 1 for the first stage only. For sub- 
sequent iterations of, Qi, qi, vf,  i i ,  M i ,  and 4 i 
are given. ii need not be computed, but is given to 
illustrate the convergence in the parameters. The 
orthogonality of all MI holds to within 2 4  in the 
tenth decimal place. 

( ,  ) 

TABLE 1. -Example of Newton-Caws iteration using the q parameters 

.o 
- .85355 33906 
- .45710 67812 

.o 

.14644 66094 

.25000 00000 

- .50000 00000 
.85355 33906 

t .85355 33906 
.o 

- .25000 00000 
- .14644 66094 

.o 
- .95710 67812 

.50000 00000 

.o 

.14644 66094 
0 
2 

1 
1 
1 
1 

.45710 67812 

.25000 00000 

.o 
- .25000 00000 
.95710 67812 
.o 

- .85355 33906 
- .14644 66094 

.o 
0 
0 
2 
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TABLE 1. -Continued 

f3 .5 
QI 1 
91 1 
v: 1.25 
il .89442 71909 

M I  = -.46568 54249 [ :;4142 13562 
v2 .80 

&$ .3 
Q2 1 
92 .85 
Vi: 1.3625 
4 2  .72819 99927 

.29541 28440 

.83122 81387 

.03027 522956 

u: .0073394496 

6; 
Q3 1 
93 .82577 98164 
V; 1.3637 48853 
i 3  .70712 64210 

.25004 16631 

.85353 37497 
v: .0000000062 

.5 .70710 67812 

.25 .25 .35355 33906 

.25 .25 .35355 33906 

:22360 67977 .22360 67977 ,31622 77660 
.66568 54249 - .25857 86437 
.7 .54142 13562 I - .25857 86437 .8 

.3 .42426 40687 

.15 .15 .21213 20343 

.4 .4 .56568 54249 

.34268 23495 .34268 23495 .48462 60262 

.94067 17225 - .16693 69983 

.29541 28440 .83122 81387 
- .16693 69983 .53027 52293 1 
.03027 522956 .04281 56401 
.01513 76148 .01513 76148 .02140 78200 
.41286 69725 .41286,69726 .58388 20719 

.35354 35703 .35354 35704 .49998 61120 

.95709 28923 - .14646 62489 

.25004 16631 .85353 37497 
.50002 77753 1 - .la46 62487 , 

4 .00002 77753 .00002 77753 .00003 92804 
Q4 1 .00001 38876 .00001 38876 .00001 96402 
94 .82575 68813 .41287 84406 .41287 84406 .58389 82903 
U: 1.363748853 
4 4  .70710 67814 .35355 33906 .353533906 .50000 00001 

.25000 00002 .95710 67817 - .14644 66097 
M4 = - .45710 67815 .25000 00002 .85355 33910 

.50000 00003 1 [ .85355 33909 - .14644 66096 
v; .0000000000 

Inspection of 4, and Mi shows the convergence to be very fast. 
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CONCLUSION 

In the writer’s opinion the added wealth of inter- 
pretation of rotations gained by the q parameteriza- 
tion is a point in its favor. However, it should be 
emphasized that the computational formulas (9) 
through (11) are all that are needed for application in 
photogrammetry. These formulas are simple and 
offer many gains whose accumulative benefit is 
large. I t  is hoped that this extended discussion will 
lead to more use by photogrammetrists of the q 
parameterization, the basic formulas of which have 
already been pointed out by Schut (1959), with- 
out as yet any noticeable impact on the photogram- 
metric community as  a whole. 
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